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Abstract

Nonlinear finite-element analysis provides a powerful tool for assessing the buckling strength of shells. Since shells
are generally sensitive to initial geometric imperfections, a reliable prediction of their buckling strength is possible only
if the effect of geometric imperfections is accurately accounted for. A commonly adopted approach is to assume that the
imperfection is in the form of the bifurcation buckling mode (eigenmode-affine imperfection) of a suitable magnitude.
For shells of revolution under axisymmetric loads, this approach leads to the analysis of a shell with periodically
symmetric imperfections. Consequently, sector models spanning over one or half the circumferential wave of the im-
perfection may be considered adequate. This paper presents a study which shows that a simple nonlinear analysis of the
imperfect shell may not deliver the correct buckling load, due to the tendency of the shell to develop mode changes in
the deformation process before reaching the limit point. This inadequacy exists not only with short sector models (half-
wave or whole-wave models) but also with more complete models (half-structure or whole-structure models) for dif-
ferent reasons. The paper concludes with recommendations on the proper use of the four different kinds of models
mentioned above in determining shell buckling strengths. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Existing shell buckling research has been largely concentrated on shells of simple geometries subject to
simple loading conditions, with only limited information on more complex problems (Teng, 1996). This
limitation of existing research is passed on to design codes for thin shell structures, which generally provide
stability design rules only for simple cases. Many shell structures, particularly civil engineering metal shell
structures, may possess a complex structural form and have to be designed to avoid buckling failure under
complex load combinations (e.g. gravitational loads + wind loads). For such complex situations, simple
design rules are not available in design codes, so nonlinear finite element analysis has been suggested for
direct use in design for assessing the buckling strength of shells (Teng, 1996). Some example shell buckling
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problems for which simple design rules do not exist can be found in Teng (1996) and Rotter (1998). Rotter
(1998) also outlines the background to the development of the European code for steel shell structures
where codified guidance for the direct application of numerical nonlinear and buckling analysis is provided
for the first time.

Since shells are generally sensitive to initial geometric imperfections, a reliable prediction of their
buckling strength is possible only if the effect of geometric imperfections is accurately accounted for, in
addition to the proper modelling of geometric and material nonlinearities for which suitable techniques
exist, at least for metal shells.

Imperfections in shells are not known at the design stage, so in order to assess the buckling strength of a
shell at the design stage, both the form and amplitude of the expected imperfection have to be specified
based on certain assumptions or prior knowledge. While statistically-based geometric imperfection models
(Chryssanthopoulos, 1991a,b; Arbocz, 1997) for a given processes of fabrication are the most rational, they
rely on a large number of surveys on full-scale structures and are not yet available for many shell structures
such as most steel shell structures in civil engineering applications. The most commonly adopted approach
in the numerical assessment of shell buckling strength is thus to assume a certain unfavourable form of
geometric imperfection with the amplitude linked to fabrication tolerance. Such imperfections are referred
to as equivalent imperfections as they are intended to cause as much strength reduction as may be expected
of actual imperfections in real shells. Limited studies (Schmidt and Krysik, 1991; Speicher and Saal, 1991)
have been carried out on the specification of simple equivalent geometric imperfections.

A commonly adopted approach for specifying geometric imperfections is to assume that the imperfec-
tion is in the form of the bifurcation buckling mode (eigenmode-affine imperfection) of a suitable mag-
nitude. This approach has been recommended by the newly developed European code for steel shell
structures (ENV 1993-1-6, 1999) unless a different unfavourable pattern can be justified. At first thought,
the determination of the buckling load of a shell seems straightforward once the imperfection form and
amplitude are given. This simple view, however, is often over optimistic.

This paper presents a study on the determination of buckling strengths of shells of revolution under
torsionless axisymmetric loads using this eigenmode-affine imperfection approach. For such shells, this
approach leads to the analysis of a shell with periodically symmetric imperfections around the circum-
ference. Consequently, sector models spanning over one or half the circumferential wave of the imper-
fection may be considered adequate. This study shows that a simple nonlinear analysis of the imperfect shell
may not deliver the correct buckling load, due to the tendency of the shell to develop a mode change in the
deformation process before reaching the limit point. This inadequacy exists not only with short sector
models (half-wave or whole-wave models) but also with more complete models (half-structure or whole-
structure models) for different reasons. The paper concludes with recommendations on the proper use of
the four different kinds of models mentioned above in determining shell buckling strengths.

All numerical results presented in this paper were obtained using the nine-node doubly curved thin shell
element available in the general-purpose computer program ABAQUs (Hibbit, Karlsson & Sorensen, 1998)
which has been widely used by the shell buckling research community. A different set of issues exists if an
axisymmetric shell element is used, a discussion of which is beyond the scope of the present paper. Most of
the points are illustrated using a cylinder subject to a radial ring load at mid-height (Fig. 1), while the
externally pressurized cylinder is used in the final part of the paper.

2. Numerical models
A perfect axisymmetrically loaded shell of revolution may bifurcate into a nonsymmetric buckling mode

consisting of periodic waves around the circumference unless axisymmetric buckling precedes nonsym-
metric bifurcation. This paper is concerned only with shells of revolution which buckle into a nonsymmetric
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Fig. 1. Cylinder under a radial ring load at mid-height.
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periodic mode. Since the buckling mode exhibits periodical symmetry, for nonlinear analysis of a shell of
revolution with an eigenmode-affine imperfection using a general shell element, a number of different
numerical models may be used as listed in Table 1. The meridional edges of the sector models and the half-
structure model are given symmetric boundary conditions, in accordance with the expected periodical
symmetry of deformations in such a shell.

A shell of revolution with a significant eigenmode-affine imperfection is expected to deform in the mode
imposed by the imperfection during a nonlinear analysis. Therefore, for the determination of the buckling
load of the imperfect structure, all four models listed in Table 1 may be expected to be appropriate.

Table 1

Numerical models for shells of revolution with eigenmode-affine imperfections

Model type

Model details

Obvious reasons for adop-
tion in nonlinear analysis

Advantages or disadvantages
in bifurcation analysis

Whole structure

Half structure

Whole wave

Half wave

The complete structure is
modelled.

Half of the structure obtained by
cutting the structure vertically
across a diametrical plane is
included with symmetry condi-
tions imposed along the merid-
ional edges.

A sector model spanning over one
complete circumferential wave is
used, with symmetry conditions
imposed along the meridional
edges.

A sector model spanning over half
a circumferential wave is used,
with symmetry conditions
imposed along the meridional
edges.

Availability of a powerful
computer and convenience
for plotting

As good as a complete
model for structures whose
deformations are at least
symmetric about one vertical
diametrical plane but
computationally more
efficient

Computationally efficient;
more convenient for graphical
examination of deformations
compared to the

half-wave sector model.
Computationally most
efficient

Bifurcation loads can be
determined without revisions
to the numerical model.
Bifurcation loads can be
determined without revisions
to the numerical model.

Many revisions to the nu-
merical model are needed in
the search for the lowest
buckling load.

Many revisions to the nu-
merical model are needed in
the search for the lowest
buckling load.
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Example studies which used half-structure, whole-wave and half-wave models include Guggenberger (1995,
1996), Knebel and Schweizerhof (1995), Goto and Zhang (1999) and Pircher et al. (1999). The choice of a
particular model depends on its suitability for both the nonlinear analysis of the imperfect structure and the
linear or nonlinear bifurcation analysis of the perfect structure, since the latter needs to be carried out
before the former to determine the eigenmode. Therefore, Table 1 gives the obvious reasons for adopting
the various models in the nonlinear analysis of the imperfect structure, together with the advantages or
disadvantages of the models in a bifurcation analysis of the perfect structure. In addition, plotting re-
quirements and available computing power also influence the choice of a particular numerical model.

In practical applications, a mixture of different models may be used to advantage for any given problem.
For example, a nonlinear bifurcation analysis can be carried out using the half-structure model, which is
then followed by a nonlinear analysis of the imperfect shell using the half-wave model. Such combinations
are a further factor of influence in the choice of numerical models.

3. Performance of different numerical models

A cylinder subject to a radial ring load ¢ (Fig. 1) was used to compare the performances of three of the
four numerical models: half-structure, whole-wave and half-wave models. The whole-structure model was
excluded from the comparison as the half-structure model was expected to show the same behaviour
characteristics. The whole-structure model is considered in the comparison of buckling loads later. The two
ends of the cylinder were restrained from radial and circumferential displacements only. As the structure
possesses symmetry about the mid-height plane, the problem was simplified down to a cylinder half the
length of the original one, with one end restrained against axial displacements and meridional rotations,
and the other end restrained against radial and circumferential displacements. For clarity of terminology, it
is better simply to refer to this cut cylinder as the original structure, while the half-structure model refers to
this cut cylinder, cut again vertically. Deformation modes antisymmetric about the mid-height were not
found to be critical for the ring loaded cylinder and the use of the cut cylinder structure precluded any such
modes. This restriction does not detract from the generality of the conclusions reached here even if such
antisymmetric modes should have been critical had the entire cylinder been modelled.

A thorough study of this problem, as a simple typical problem of a cylinder under local circumferential
compression is given in Song and Teng (2000), where the accuracy of the ABAQUs models is also dem-
onstrated through comparisons of bifurcation buckling loads from ABAQUSs and the well-tested NEPAS
program for shells of revolution (Teng and Rotter, 1989). As mentioned earlier, all results presented in this
paper were obtained using ABAQUS. The cylinder examined here has a thickness # = 1 mm, a radius-to-
thickness ratio R/¢ = 500 and a length-to-radius ratio L/R = 3. The elastic modulus £ = 2 x 10° MPa and
Poisson’s ratio v = 0.3. This cylinder was predicted by ABAQUS to have a linear bifurcation load ¢%. of 7.566
N/mm with eight circumferential buckling waves (i.e. n,, = 8) and a nonlinear bifurcation load ¢\ of 6.920
N/mm with 15 circumferential buckling waves. The nonlinear bifurcation analysis took into account the
effect of prebuckling deformations which led to a small reduction in the buckling load but a large increase in
the number of buckling waves. The linear and nonlinear bifurcation modes are shown in Fig. 2. In the
present study, the imperfections were assumed to be in the form of the nonlinear bifurcation mode.

The half-wave model is the simplest of the three models being considered. The load—deflection curves
obtained using the arc-length method (Wempner, 1971; Riks, 1979; Crisfield, 1981; Ramm, 1981) as im-
plemented in ABAQUSs for half-wave models of a ring-loaded cylinder with eigenmode-affine geometric
imperfections of different amplitudes are shown in Fig. 3. The vertical axis in Figs. 3-5, 7,9, 10 and 12 is the
load factor over the nonlinear bifurcation load, so a value of 0.8, e.g., for the maximum load factor in-
dicates a 20% reduction in the buckling load due to an imperfection. The horizontal axis in the same figures
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Fig. 2. Linear and nonlinear bifurcation modes: (a) linear bifurcation buckling mode and (b) nonlinear bifurcation mode.

N
i

L Imperfection Amplitude

- —>—5/t=0.1
- —o—o/t=0.2
L —o—8/t=0.4
L —&—8Mt=1.0

Load Factor g/qN
o =~ =N
o] N [} o

o
ES
T

' 1 1 1 1 1 1 1 1 I 1 1 1 I 1
00 04 08 12 16 20 24 28
Displacement W/t

Fig. 3. Load—deflection curves from half-wave sector models.



3268 J.G. Teng, C.Y. Song | International Journal of Solids and Structures 38 (2001) 3263-3280

28T T T T T T

g
~
—

g
=}

—>¢— Half-Wave Model
I —©— Whole-Wave Model
|- —A— Half-Structure Model /

N
o

Load Factor g/qN
o

08} B

0.4

B, 1 1 1 1 PR 1
00 04 08 12 16 20 24 28
Displacement Wit

0.0

Fig. 4. Comparison of load—deflection curves between three different models.

8

o
o

N
cr

Load Factor g/q
o
N

_1
Imperfection Amplitude 5/t=0.4
02 —>— Max. Arc-Length T
Increment = 0.1 J
—2— No Limit on Arc-Length
2 Increment
00 . S I S— L L L 1
0.0 04 0.8 1.2 1.6

Displacement W/t

Fig. 5. Effect of an arc-length increment limit on the load—deflection curve of a half-structure model.

is the radial displacement normalized by the shell thickness at the wave crest in both the half-wave model
and the whole-wave model, or that of point I in the half-structure model (Fig. 2).

Fig. 3 shows that the shell is rather sensitive to geometric imperfections, but a limit point cannot be
found on the load—deflection curve when a reasonably large imperfection is present. Fig. 4 compares the
results from the three numerical models. They are identical as expected.

The curves shown in Figs. 3 and 4 are not so smooth as only a small number of converged points were
available. When the calculations were repeated to obtain better curves by limiting the maximum increment
in the normalized arc-length as used in ABAQUS, surprising results were obtained. The results are shown in
Fig. 5 for an imperfection amplitude §/¢ = 0.4. The results from the whole-wave and half-wave models with
the maximum increment in arc-length Al limited to 0.1 are similar to those without such a limit (not
shown here). However, the results from the half-structure model are surprisingly affected by this limit (Fig.
5). In particular, the new load—deflection curve has a limit point at a load of 0.654 g\ N/mm. The deformed
shapes of the half-structure model for two points (points A and B) on the two load—deflection curves of Fig.
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Fig. 6. Deformed shapes of a half-structure model: (a) maximum arc-length increment not limited and (b) maximum arc-length in-
crement = 0.1.

5 are illustrated in Fig. 6. The deformed shape of the shell obtained without a limit on the arc-length in-
crement has the same number of periodical waves as the imperfection, while that with a limit on the arc-
length increment has large localized deformations in two zones. Furthermore, it was found that using the
half-structure model, the limit point load also changed with the finite-element mesh when a limit was
imposed on the arc-length increment (Fig. 7). The meshes considered here had 12 nodes, 16 nodes, 24 nodes
and 32 nodes per circumferential wave of the imperfection with the vertical divisions being the same. The
dimensionless limit point loads ¢/¢% for the four different meshes are 0.649, 0.654, 0.804 and 1.530. The
different meshes all resulted in the same load—deflection response in the initial stage, so the meshes were all
fine enough to model the deformations of the structure accurately. This situation contrasts with that for the
whole-wave and half-wave models for which the load—deflection curves were not found to depend on the
finite-element mesh.

While an arc-length increment limit of 0.1 was used in obtaining the results presented in Figs. 5 and 7, it
should be noted that the particular value of this limit should not be given too much significance. The im-
portant observation is that if the arc-length increment is limited to be sufficiently small, then the predicted
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Fig. 7. Mesh dependence of the load—deflection curves.

response will be affected by such a limit. For the cases considered in Figs. 5 and 7, while a limit of 0.05 was
found also to affect the predicted response, a limit of 0.5 was found to have no appreciable effect on the
prediction.

Based on the above discussions, one might be inclined to conclude that both the whole-wave and half-
wave models may be used in nonlinear analysis, while the half-structure model is unreliable. The validity of
this conclusion is challenged in Section 4.

4. Nonlinear bifurcation of imperfect shells

The dependence of the limit point buckling load of a shell with a significant eigenmode-affine imper-
fection on mesh refinements and solution procedures was initially surprising. Subsequently, it was realized
that the sensitivity of the behaviour to details in the solution method arose from the existence of a bi-
furcation point along the primary path of the imperfect shell. The primary path of the imperfect shell refers
to its deformation path with the deformation mode being that imposed by the eigenmode-affine imper-
fection. As the shell advances along the primary path, the eigenmode-affine imperfection is amplified and
modified in shape. The total deformations are the sum of an axisymmetric component and a non-axi-
symmetric component that is initially in the form of a single harmonic but gradually evolves into one
accurately describable only by the sum of a number of harmonic terms.

A careful check of the ABAQUS output did identify some signs of a bifurcation point: the program re-
ported for both the whole-wave and half-structure models that there was a negative eigenvalue at a certain
load level, which meant that a bifurcation point had been passed for these models. For the half-wave model,
such a bifurcation point was not indicated and was nonexistent due to the imposed symmetry conditions
along two closely-spaced meridional generators.

To find the precise buckling load of the imperfect shell, the exact location of the bifurcation point on the
primary deformation path is required. Provided this bifurcation point leads to a descending path, then the
bifurcation load represents the ultimate strength of the imperfect shell. A nonlinear bifurcation analysis for
the half-structure model of the imperfect shell with an imperfection amplitude 6/t = 0.4 gave a bifurcation
load of 0.651 ¢X. The corresponding nonlinear bifurcation mode is shown in Fig. 8.
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The effect of a limit on the maximum arc-length increment discussed in Section 3 can now be explained
as follows. Ideally, the shell should deform along the primary path, if no disturbance exists to induce the
shell to deform along the post-bifurcation path. This is the case for the analyses carried out without a limit
on the maximum arc-length increment (Figs. 3 and 4). In such analyses, disturbances from numerical
round-off errors were too small to cause the shell to deform along a post-bifurcation path. With the im-
position of a limit on the arc-length increment, more loading steps and iterations were required in the
analysis process, leading to greater numerical round-off errors. With this limit being sufficiently small, these
numerical errors were then significant enough to induce the shell to deform along a post-bifurcation path. It
should be noted that there is no guarantee at all that these numerical errors will turn the shell deformation
path at the correct bifurcation load or to lead it along the correct post-bifurcation path (Fig. 7). In two of
the cases considered in Fig. 7, the peak load is close to the actual bifurcation load (Fig. 7a), while in the
other two cases the peak load is significantly higher than the actual bifurcation load. For the latter two
cases, the analysis was found to fall back on the original load—deflection curve in one case and to go on to a
higher post-bifurcation path in the other (Fig. 7b). Therefore, even when random numerical round-off
errors do induce the shell to follow a post-bifurcation path, the limit point load so predicted cannot be
relied on as the correct bifurcation load or a close approximation of it.

5. Post-bifurcation analysis of imperfect shells

To find out if a bifurcation point leads to a descending load-deflection path, nonlinear analyses are
required in which the imperfection included a small component in the form of the nonlinear bifurcation
mode of the imperfect shell. Such analyses were carried out for three different imperfection amplitudes in
the present investigation. An imperfection of the following form was used:

(W =21} +001p(U.y)

where { Uy} is the normalized nonlinear bifurcation mode of the perfect shell and {U,} is the normalized
nonlinear bifurcation mode of the imperfect shell. Both bifurcation modes are bi-directional in nature, i.e.,
the maximum bifurcation displacement can be inwards or outwards. For simplicity of description here, the
directions of the two bifurcation modes are assumed to be positive when the combined imperfection with
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p =1 (i.e. when they are added together) has an amplitude greater than that of the original eigenmode-
affine imperfection.

Three cases were considered: 6/t = 0.4, 1 and 2. Fig. 9 shows the load—deflection curves for these three
cases with or without a limit for the arc-length increment with p = 1. It is first appropriate to examine the
case of 6/t = 1, where an arc-length increment limit is found to change the path. Furthermore, the initial
peak at g/gY = 0.670 of the load-deflection curve obtained with no limit on the arc-length increment
disappears in the curve obtained with a limit of 0.1 for the arc-length increment. The second peak (point A)
of the former curve at g/g} = 0.680 corresponds to the peak at g/gY = 0.679 (point B) on the latter curve.
All three peak loads are a little higher than the dimensionless nonlinear bifurcation load of the imperfect
shell which is 0.646. This difference in behaviour is surprising but can be explained if Fig. 10 is examined
carefully.

In Fig. 10, the primary path of the imperfect shell with an eigenmode-affine imperfection only is shown
together with two post-bifurcation paths which emanate from the primary path for each of the three values
of 6/t. These two post-bifurcation paths correspond to two different choices of the direction of the second
component of imperfection (p = 1 and p = —1). This indicates that the two paths followed in Fig. 9 in fact
correspond to two different post-bifurcation paths, due to influences from small random numerical round-
off errors. Fig. 10b shows that the initial peaks on the load—deflection curves obtained when the arc-length
increment was not limited disappear once a limit was imposed. The rounding of these initial peaks can be
attributed to the greater numerical errors due to the imposition of a limit on the arc-length increment.
Further, it is interesting to note that a limit on the arc-length increment also reversed the directions of the
post-bifurcation paths followed by the analyses (Fig. 10b).

The deformed shapes for the shell with /¢ = 1 correspond to points C on the two load—deflection curves
of the two different conditions of arc-length increments (Fig. 9) differ basically by a circumferential shift,
while the overall patterns of the deformations for the two cases are very similar (Fig. 11). For the other
cases, (0/t = 0.4 and 6/t = 2), such a shift in deformation pattern was not induced by numerical round-off
errors.

Table 2 lists the limit point loads and the nonlinear bifurcation loads for all three imperfect cylinders
with p = 1. For 6/t = 0.4 and 2, the bifurcation loads of the imperfect shells are very close but slightly
higher than the corresponding limit point loads, indicating that the bifurcation load is the upper limit of the
ultimate strength of the imperfect shell for these cases. For the other shell with 6/¢ = 1, the limit point loads
are slightly higher than the corresponding bifurcation loads. For the two load—deflection curves obtained
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Comparison of nonlinear bifurcation loads and limit point loads

o/t Nonlinear bifurcation load Limit point load ¢/¢N(p = 1)
N
/9 No limit on arc-length increment Arc-length increment limited to 0.1
0.4 0.651 0.641 0.642
1 0.646 0.680 0.670
2 0.909 0.908 0.908
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Fig. 12. Independence of limit point loads of mesh refinements.

with a limit for the arc-length increment, the higher limit loads are attributable to a weakly stable initial
post-bifurcation path (Fig. 10b). For the other two curves, the reason for the initial peak loads being higher
than the bifurcation load is not so easy to pinpoint given the complex processes involved in the analyses.
These results demonstrate the complexity involved in nonlinear analyses to determine the buckling strength
of shells. Despite this complication, the limit point loads of these shells with complex imperfections are
basically independent of the arc-length increment (Table 2).

Fig. 12 demonstrates the insensitivity of the limit point load to mesh refinements, although a small
difference is seen between the two meshes explored for the case of 6/¢ = 2 (less than 1% difference for the
limit point load).

6. Comparison of buckling loads of imperfect shells

Since the buckling load of the imperfect shell was of primary interest, this buckling load was determined
for imperfections of various amplitudes using the four different numerical models and given in Table 3. For
all models, the buckling load is the limit point load when /¢ = 0.1 and 0.2 as no bifurcation point exists
before the limit point. For other values of ¢/¢, the buckling load is taken to be that of the inflection point
(Yamaki, 1984) of the load—deflection curve for half-wave models (underlined values in Table 3), and the
nonlinear bifurcation load of the imperfect shell for other models. The latter treatment represents a rela-
tively simple and close approximation for the present problem, as the post-bifurcation path of the imperfect
shell may be weakly stable and thus may lead to a limit point slightly higher than its nonlinear bifurcation
load (Fig. 10).
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Table 3

Comparison of buckling loads
o/t 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.6 2.0
Half wave 0.838 0.758 0.659 0.603 0.551 0.510 0.468 0.406 0.320
Whole wave 0.838 0.758 0.650 0.587 0.588 0.637 0.691 0.800 0.905
Half structure 0.838 0.758 0.651 0.593 0.596 0.646 0.701 0.809 0.909
Whole structure 0.838 0.758 0.650 0.593 0.595 0.647 0.704 0.817 0.916
(spurious mode) (0.578) (0.539) (0.505) (0.453) (0.418)

The differences between the buckling loads of the half-wave model and the other models are large. One
may dismiss the validity of the inflection point method as being appropriate for the determination of the
buckling load, but if this method is dismissed, no other suitable methods seem apparent. Apart from the
buckling loads, there are important differences between the post-buckling responses predicted by the half-
wave model and the other models. The half-wave model precluded any bifurcation due to the imposition of
symmetry conditions along the two meridional edges. The stable post-buckling curve means that the ul-
timate strength of the shell can only be limited by material yielding. As the half-wave model leads to in-
correct buckling loads and post-buckling responses, it is not suitable for the present problem.

On the other hand, the whole-wave model is seen to predict the buckling loads closely for this problem.
The advantage of the whole-wave model is its computational efficiency, but whether this model can always
predict the buckling load closely is uncertain. A whole-wave model allows some possibilities of bifurcation
of the imperfect shell. If the bifurcation mode corresponds to a load near the lowest bifurcation load of the
whole-structure model, the whole-wave model leads to a close prediction of the buckling load. Similarly,
whether the whole-wave model predicts a post-buckling path close to the actual post-buckling path is also
uncertain.

The half-structure model has many advantages over the other models. It predicts accurately the buckling
load and mode, and is computationally much more efficient than the whole-structure model. The whole-
structure model is expected to give the most reliable answer as it is given no artificial constraint. In most
cases, however, a vertical plane of symmetry exists in the deformations, and the half-structure model is as
good as the whole-structure model.

The whole-structure model was found to have another disadvantage in addition to being computa-
tionally most inefficient; it is more likely to experience spurious modes such as that shown in Fig. 13 for
0/t = 1. These spurious modes are likely to be suppressed by imposed symmetry conditions along the two
meridional edges in the half-structure model. The whole issue of spurious modes in nonlinear bifurcation
analysis is very complicated, and will not be dealt with in detail here. For the present purpose, it is im-
portant to note that a negative eigenvalue, while indicating a bifurcation of deformation path in most cases,
can correspond to a spurious mode. For the ring loaded cylinder considered here, the first bifurcation mode
found was often a spurious mode. The bifurcation loads correspond to the spurious modes are also listed in
Table 3. This shows that in order to determine the buckling strength of a shell with eigenmode imper-
fections, it is not sufficient just to locate the bifurcation point; the bifurcation mode should be inspected to
ensure that the mode is realistic. Fig. 14 shows the correct nonlinear bifurcation mode of an imperfect shell
with 6/t = 0.4. This mode is found to match well with that obtained using the half-structure model (Fig. 8).

It should be remarked that in all cases where nonlinear bifurcation rather than limit point buckling is the
critical, the buckling loads predicted by the half-structure model are slightly higher than those by the whole-
wave model. For the larger imperfection amplitudes considered, the buckling loads of the whole-structure
model are slightly higher than those of the half-structure model, although in most cases the whole-structure
and half-structure models agree with each other closely. The above phenomenon is contrary to conven-
tional beliefs, but these differences are very small.
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Fig. 13. Spurious bifurcation mode of a whole-structure model for an imperfect cylinder.
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Fig. 14. Nonlinear bifurcation mode of a whole-structure model for an imperfect cylinder.

7. Cases requiring a whole-structure model

The preceding discussions may lead to the assertion that the half-structure model should be able to
capture all deformation modes and is as good as the whole-structure model for axisymmetrically loaded
shells of revolution with eigenmode-affine imperfections. Is there then a need at all for the whole-structure
model for such problems? The externally pressurized cylinder provides an interesting example for which the

whole-structure model is required.
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Post-buckling behaviour of cylinders under external hydrostatic pressure has been investigated both
experimentally and numerically (Esslinger and Geier, 1975; Yamaki, 1984; Guggenberger, 1996). A striking
feature of the post-buckling response is that the observed final failure is in a torsional mode. This was first
observed by Esslinger and Geier (1975) and recently further studied by Guggenberger (1996).

Guggenberger (1996) appears to be the first to have reproduced the torsional failure mode with the finite-
element method. A whole-wave model was used in his analysis in which ‘cyclic’ boundary conditions were
used for the two meridional edges instead of the conventional symmetry boundary conditions so that
torsional deformations were possible. A small torsional disturbance force was applied to trigger the shell to
deform into the torsional failure mode and then subsequently removed. This approach is not realistic if the
physical phenomenon is not known a priori, so it cannot be generally applicable. As pointed out by
Guggenberger, if symmetric boundary conditions are used for the meridional edges in a whole-wave model,
no torsional deformations will occur. On the other hand, such torsional deformations can be easily ac-
commodated by a whole-structure model, although the model may still be unable to predict the torsional
mode without any intervention.

The shell considered here has the same geometric and material properties as those assumed by Gug-
genberger (1996): length L = 400 mm, radius R = 200 mm, thickness = 1 mm, elastic modulus £ = 3200
MPa, and Poisson’s ratio v = 0.35. The bottom end was completely clamped, while the top end was closed
by a rigid circular steel plate.

Fig. 15 shows two load—deflection curves of the shell with an imperfection in the shape of the first linear
buckling mode of the perfect shell (n, = 8). The imperfection amplitude 6/¢ = 2. The only difference be-
tween these two curves is the choice of the maximum arc-length increment. The analysis with a smaller arc-
length increment limit produced curve II which indicates a mode change at point A (¢/q5 = 1.28), but the
one with a larger limit could not predict this mode change. Point A was confirmed by a nonlinear bifur-
cation analysis of the imperfect shell to be a true bifurcation point. Fig. 16 shows the nonlinear bifurcation
mode of the imperfect shell, where torsional deformations are evident.

Fig. 17 shows typical deformed shapes of the three phases of curve II: OA, AB, and BC, where the
change of deformation mode is clearly seen. The deformed shapes correspond to positions indicated by
large circles on the load—deflection curve. The automatic transition of the deformation path predicted by
the analysis with a smaller arc-length limit is attributable to accumulated numerical round-off errors. With
a smaller value for the maximum arc-length increment, more loading increments and equilibrium iterations
were needed, which in turn led to larger numerical round-off errors.
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Fig. 15. Load-deflection curves of an externally pressurized cylinder.



3278 J.G. Teng, C.Y. Song | International Journal of Solids and Structures 38 (2001) 3263-3280

AV

1

I

Fig. 16. Nonlinear bifurcation mode of an externally pressurized imperfect cylinder.

11 1 T
HHH :
i ;
N »
e o
E:: ]
] :
1 : '
T
(Disp. Magnification Factor=6) (Disp. Magnification Factor=3) (Disp. Magnification Factor=3)
) a= L R
(a) g=1.106qc; (b) q=1.43q% (c) g=1.45q%

Fig. 17. Mode changes in an externally pressurized cylinder.

The same problem was analysed using a half-structure model, which predicted a maximum load-carrying
capacity of ¢ = 2.37g% with the maximum arc-length increment limited to 0.1. This shows that even for the
prediction of the maximum load carrying capacity, the inclusion of the whole structure model is necessary
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in some cases. This is the case if the maximum load coincides with a deformation mode change that destroys
the symmetry conditions imposed on the two meridional edges lying at the ends of a diametrical plane in the
half-structure model. The torsional deformations of the shell was also not correctly predicted by the half-
structure model.

8. Conclusions

This paper has discussed a number of issues needing particular care by numerical analysts in predicting
the buckling strength of axisymmetrically loaded elastic shells of revolution with eigenmode-affine im-
perfections using a general curved thin shell element. It is likely that there are other pitfalls in the nonlinear
analysis of shells, so there is no place for complacence for such analyses. Within the limitation of elastic
behaviour, the following conclusions can be drawn from this study:

(1) The simplistic belief, which is correct for systems with simple buckling behaviour, that an eigenmode
imperfection converts the bifurcation buckling problem to a limit point problem and hence the load car-
rying capacity can be determined by a straightforward nonlinear analysis can lead to erroneous results. This
is because a shell may experience mode changes in the deformation process before reaching the limit point.
While mode changes have generally been associated with post-buckling behaviour of perfect shells,
the present study shows that mode changes are also important in prebuckling deformations of imperfect
shells.

(2) An axisymmetrically-loaded shell of revolution with an eigenmode-affine imperfection possesses
periodical symmetry which has often been exploited in building numerical models. The existence of one or
more bifurcation points along the deformation path means that such symmetry is not maintained
throughout the process of deformation, so its exploitation in analysis may lead to erroneous results.

(3) A nonlinear bifurcation analysis of the deformed imperfect shell without the imposition of incom-
patible symmetry conditions is necessary to guarantee the correct prediction of any bifurcation point and
the buckling strength. While random numerical round-off errors may induce the shell to deform along a
post-bifurcation path, the bifurcation load and the post-bifurcation path so obtained are not reliable and
are sensitive to mesh refinements and details of the solution procedure.

(4) A whole-structure model with bifurcation behaviour continuously monitored and followed should be
capable of predicting the correct buckling load, provided that spurious bifurcation modes are weeded out in
the analysis by checking the nonlinear bifurcation modes or guarded against by the use of more sophis-
ticated shell elements.

(5) A half-structure model should be as good as a whole-structure model provided a vertical diametri-
cal plane of symmetry exists for the deformations and does not seem to suffer from the spurious mode
problem.

(6) If the buckling load is the main parameter of interest and it can be ascertained that no bifurcation
point exists before reaching the limit point buckling load even when the whole-structure is modelled, the
half-wave model is then an accurate and very efficient model. The predicted load—deflection path is that of a
shell deforming in a periodical mode imposed by the eigenmode-affine imperfection.

(7) The whole-wave model allows some possibilities of bifurcation. For the present problem, it predicts
the buckling load well, although the deformation mode cannot be correctly predicted. If it can be shown
that the whole-wave model is generally capable of delivering the buckling load accurately, though with
some errors in the deformed shape, it can be a useful model for practical applications as it is very economic.
Further research should be carried out on the wider suitability of the whole-wave model.

Finally, it should be noted that, in the presence of material plasticity, some of the observations made will
have to be modified. A similar study on shells with elastic—plastic material behaviour should be carried out
in the future.
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